LIFI TECHNOLOGY

                                                                             INTRODUCTION

Li-Fi — Short for light fidelity is a technology for wireless communication between devices using light to transmit data and position. In its present state only LED lamps can be used for the transmission of visible light. The term was first introduced by Harald Haas during a 2011 TEDGlobal talk in Edinburgh. In technical terms, Li-Fi is a visible light communications system that is capable of transmitting data at high speeds over the visible light spectrum, ultraviolet and infrared radiation.

In terms of its end use the technology is similar to Wi-Fi. The key technical difference is that Wi-Fi uses radio frequency to transmit data. Using light to transmit data allows Li-Fi to offer several advantages like working across higher bandwidth, working in areas susceptible to electromagnetic interference (e.g. aircraft cabins, hospitals) and offering higher transmission speeds. The technology is actively being developed by several organizations across the globe.

Technology details[edit]

This optical wireless communications (OWC) technology uses light from light-emitting diodes (LEDs) as a medium to deliver networked, mobile, high-speed communication in a similar manner to Wi-Fi. The Li-Fi market is projected to have a compound annual growth rate of 82% from 2013 to 2018 and to be worth over $6 billion per year by 2018.

Visible light communications (VLC) works by switching the current to the LEDs off and on at a very high rate, too quick to be noticed by the human eye. Although Li-Fi LEDs would have to be kept on to transmit data, they could be dimmed to below human visibility while still emitting enough light to carry data. The light waves cannot penetrate walls which makes a much shorter range, though more secure from hacking, relative to Wi-Fi. Direct line of sight is not necessary for Li-Fi to transmit a signal; light reflected off the walls can achieve 70 Mbit/s.

Li-Fi has the advantage of being useful in electromagnetic sensitive areas such as in aircraft cabins, hospitals and nuclear power plants without causing electromagnetic interference. Both Wi-Fi and Li-Fi transmit data over the electromagnetic spectrum, but whereas Wi-Fi utilizes radio waves, Li-Fi uses visible light, Ultraviolet and Infrared. While the US Federal Communications Commission has warned of a potential spectrum crisis because Wi-Fi is close to full capacity, Li-Fi has almost no limitations on capacity.The visible light spectrum is 10,000 times larger than the entire radio frequency spectrum. Researchers have reached data rates of over 224 Gbit/s, which was much faster than typical fast broadband in 2013. Li-Fi is expected to be ten times cheaper than Wi-Fi. Short range, low reliability and high installation costs are the potential downsides.

Pure LiFi demonstrated the first commercially available Li-Fi system, the Li-1st, at the 2014 Mobile World Congress in Barcelona.

Bg-Fi is a Li-Fi system consisting of an application for a mobile device, and a simple consumer product, like an IoT (Internet of Things) device, with color sensor, micro controller, and embedded software. Light from the mobile device display communicates to the color sensor on the consumer product, which converts the light into digital information. Light emitting diodes enable the consumer product to communicate synchronously with the mobile device.

Applications

Security

In contrast to radio frequency waves used by Wi-Fi, lights cannot penetrate through walls and doors. This makes it more secure and makes it easier to control access to a network. As long as transparent materials like windows are covered, access to a Li-Fi channel is limited to devices inside the room.

Underwater application

Most remotely operated underwater vehicles (ROVs) are controlled by wired connections. The length of their cabling places a hard limit on their operational range, and other potential factors such as the cable’s weight and fragility may be restrictive. Since light can travel through water, Li-Fi based communications could offer much greater mobility. Li-Fi’s utility is limited by the distance light can penetrate water. Significant amounts of light do not penetrate further than 200 meters. Past 1000 meters, no light penetrates.

Hospital[edit]

Many treatments now involve multiple individuals, Li-Fi systems could be a better system to transmit communication about the information of patients. Besides providing a higher speed, light waves also have little effect on medical instruments and human bodies.

Vehicles

Vehicles could communicate with one another via front and back lights to increase road safety. Also street lights and traffic signals could also provide information about current road situations.

Industrial automation

Anywhere in industrial areas data has to be transmitted, Li-Fi is capable of replacing slip rings, sliding contacts and short cables, such as Industrial Ethernet. Due to the real time capability of Li-Fi (which is often required for automation processes) it is also an alternative to common industrial Wireless LAN standards.

©2018 idlAxis All Rights Reserved

Log in with your credentials

or    

Forgot your details?

Create Account